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Figure 1. Try-on videos generated by 3DV-TON. Our method can handle various types of clothing and body poses, while accurately
restoring clothing details and maintaining consistent texture motion.

Abstract

Video try-on replaces clothing in videos with target gar-
ments. Existing methods struggle to generate high-quality
and temporally consistent results when handling complex
clothing patterns and diverse body poses. We present 3DV-
TON, a novel diffusion-based framework for generating
high-fidelity and temporally consistent video try-on results.
Our approach employs generated animatable textured 3D
meshes as explicit frame-level guidance, alleviating the is-
sue of models over-focusing on appearance fidelity at the
expanse of motion coherence. This is achieved by enabling
direct reference to consistent garment texture movements
throughout video sequences. The proposed method features
an adaptive pipeline for generating dynamic 3D guidance:
(1) selecting a keyframe for initial 2D image try-on, fol-
lowed by (2) reconstructing and animating a textured 3D
mesh synchronized with original video poses. We further in-
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troduce a robust rectangular masking strategy that success-
fully mitigates artifact propagation caused by leaking cloth-
ing information during dynamic human and garment move-
ments. To advance video try-on research, we introduce HR-
VVT, a high-resolution benchmark dataset containing 130
videos with diverse clothing types and scenarios. Quanti-
tative and qualitative results demonstrate our superior per-
formance over existing methods. The project page is at this
link https://2y7c3.github.io/3DV-TON/

1. Introduction

Video try-on aims to change the person’s clothing in the
given video to a target garment, enabling customers to vi-
sualize themselves wearing clothing items without phys-
ical trials through enhanced immersion and interactivity.
The process must preserve intricate garment details while
maintaining consistent texture representation throughout
the video sequence.

Prior video try-on works [11, 30, 70] typically employ
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Figure 2. Textured 3D guidance. We construct the textured 3D
guidance based on image try-on results, then animate the mesh
after pasting the texture, providing a consistent texture motion ref-
erence on the appearance level.

flow-driven warping modules [5, 12, 16, 54, 58] for pre-
cise garment alignment on human figures, complemented
by neural generators to synthesize the final appearance.
However, these methods face inherent limitations from their
reliance on warping operations: while effectively adapting
garment geometry through shape deformation to match pose
variations, they inherently compromise temporal coherence
in generated sequences. This fundamental constraint hin-
ders handling of substantial clothing deformations and com-
plex occlusions, limiting practical application to simplified
scenarios.

Recent advancements [13, 62] harness pre-trained diffu-
sion models [27, 49] to address limitations of conventional
warping modules. These works [13, 62] implement a dual-
UNet architecture: a primary denoising UNet [50] along-
side a parallel reference UNet that directly extracts garment
features, eliminating explicit warping. Hierarchical tempo-
ral attention layers [20] are integrated within the denoising
net to model motion dynamics and mitigate inter-frame in-
consistencies. Concurrently, Diffusion Transformer (DiT)-
based frameworks [46] demonstrate enhanced performance
in video try-on through superior generative scalability, as
evidenced by works like [8, 69]. Nevertheless, empirical
analysis in [4] reveals that pixel-reconstruction objectives
in video diffusion models remain constrained in achieving
robust temporal coherence.

In this paper, we present 3DV-TON, a diffusion-
based framework for generating high-fidelity temporally-
consistent video try-ons. To tackle the limitation, mod-
els prioritize appearance fidelity over motion coherence, in
prior literature where pixel-based reconstruction objectives
inherently, we introduce explicit frame-level textured 3D
guidance. Our method directly models 3D human meshes
wearing target garments, ensuring spatiotemporal consis-
tency across diverse poses and viewpoints through motion-
aligned mesh propagation, which providing a consistent
motion reference on the appearance level. While exist-

ing methods [71, 72] employ 3D human priors, they ex-
clusively utilize geometric structural cues without textured
guidance. Our experiments demonstrate that geometric-
only guidance (e.g., SMPL [41, 45]) often fails to suffi-
ciently constrain models, resulting in appearance-biased op-
timization and motion artifacts. Crucially, our textured 3D
guidance uniquely preserves garment identity throughout
video sequences, addressing a critical oversight in current
video try-on works.

As illustrated in Figure 2, our pipeline begins with se-
lecting a frame through pose estimation, processed using
advanced diffusion-based image try-on methods [6, 7, 61].
This initial frame undergoes animatable textured 3D mesh
reconstruction aligned with the source video motion to gen-
erate temporally consistent reference sequences. Unlike
the previous warp module, our framework leverages single-
image 3D reconstruction [48, 59, 60, 67] to inherently es-
tablish spatiotemporal consistency, delivering robust ap-
pearance priors for the denoising UNet while reducing tem-
poral attention dependencies. This strategy effectively by-
passes complex warping operations through mesh anima-
tion, while benefiting from mature single-image reconstruc-
tion methods without task-specific retraining.

We further propose a dynamic rectangular masking strat-
egy to prevent garment information leakage during human
motion, which is a primary failure source in video try-on.
To counter excessive masking, we implements both cloth-
ing images and try-on images as references to provide gar-
ments and environment context, and design an effective
guidance feature extraction and fusion diffusion-based ar-
chitecture. Comprehensive experiments demonstrate that
our 3D-aware framework achieves superior visual quality
and consistency in complex dynamic scenarios compared
to existing approaches.

In summary, our main contributions are as follows:

• We propose 3DV-TON, a novel diffusion-based video
try-on method that employs textured 3D guidance to al-
leviate motion incoherence stemming from appearance
bias. Our method effectively generates try-on videos
maintaining consistent texture motion across varying
body poses and camera viewpoints.

• We introduce a 3D guidance pipeline capable of adap-
tively generating animatable textured 3D meshes, en-
suring consistent texture guidance across both spatial
and temporal domains. The framework seamlessly in-
tegrates with existing methodologies without necessi-
tating additional training.

• We establish a high-resolution video try-on benchmark
enabling better evaluation of recent works, and demon-
strate that our 3DV-TON outperforms existing video
try-on methods in both quantitative and qualitative ex-
periments.
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2. Related Works
Image Virtual Try-on. Image virtual try-on aims to gen-
erate images of a target person wearing a given clothing.
Many GAN-based methods [5, 12, 16, 24, 29, 54, 58, 65]
typically first warp the clothing image onto the target per-
son’s body. Then, a generator is used to blend the warped
clothing with the human body to produce realistic results.
These methods rely on the accuracy of the warping mod-
ule. Due to undesired distortions and artifacts caused by the
TPS [1]-based methods [21, 43], many subsequent meth-
ods [16, 22, 24, 29, 58] have focused on predicting dense
flow to achieve better warping of clothing, and have made
significant progress. However, explicit warping techniques
still struggle with complex poses and occlusions.

Recently, several works [6, 7, 18, 33, 44, 61] tend to em-
ploy powerful pre-trained diffusion models [27, 49] as an
alternative to GANs [17] to generate more realistic try-on
results. OOTDiffusion and IDM-VTON [6, 61] utilized a
dual-UNet [50] structure and integrated clothing features
and person features through self-attention. CatVTON [7]
proposed to merge dual-UNet architectures, simplifying the
training parameters and the inference process. However,
applying image-based try-on techniques frame by frame to
videos can lead to temporal inconsistent results.
Video Virtual Try-on. Compared to image try-on, video
try-on needs to maintain temporal consistency between
frames to generate realistic, high-quality results, which adds
more challenges to the task. Previous works [11, 30, 70]
typically employs a flow-based warping module [5, 12, 16,
54, 58] for precise garment alignment on human bodys, and
combine the warped clothing with the person in the video.
In video try-on, warp-based methods also face challenges in
handling complex textures and motion.

Recent diffusion-based works [13, 25, 55, 62], build on
the dual-UNet architecture, a primary denoising UNet [50]
alongside a parallel reference UNet that directly extracts
garment features to preserve the visual quality, and in-
sert hierarchical temporal modules [20] to ensure temporal
smoothness. ViViD [13] releaseed a new dataset and im-
proves the generation resolution from 256 to 512. Some
works [55, 62] utilized private datasets with a resolution
of 512 and introduced techniques to emphasize the cloth-
ing. More recently, some works [8, 69] utilized the power-
ful diffusion transformer (DiT) framework and have made
significant progress in the video try-on task. However, these
methods struggle to maintain consistent temporal coherence
between frames, tend to generate over-smoothed deformed
clothing textures.
Clothed 3D Human Reconstrction. Previous works [10,
15, 39, 68] typically requires modeling a 3D human body
model and a clothing model, and then fit the clothing onto
the human body model. Additionally, when animate the
model, physical simulation is introduced to generate nat-

ural clothing movement. One line of research, e.g., Dif-
fAvatar [39], proposed a methods for body shape and gar-
ment assets recovery from 3D scan of a clothed person,
and utilized differentiable simulation for co-optimizing gar-
ment and human body. Such methods have very high re-
quirements for the input data. On the other hand, several
methods reconstructs a clothed human from a single im-
age and simultaneously models the clothing along with the
person for animation. ICON [59] used body-based nor-
mal estimation for implicit 3D reconstruction. ECON [60]
significantly improved reconstruction robustness by inte-
grating explicit shape-based approaches with normal priors.
SIFU [67] proposed a side-view conditioned implicit func-
tion to achieve more accurate reconstruction results. More
recently, some works [48, 57] introduced large reconstruc-
tion models (LRMs) to enable feed-forward clothed hu-
man reconstructions. These works are capable of generat-
ing photorealistic, animatable human avatars in seconds, but
they struggle to produce flexible clothing motions.

3. Method
The overview pipeline of our 3DV-TON is illustrated in Fig-
ure 3. We first introduce the textured 3D guidance genera-
tion pipeline in Section 3.1. Then, the model architecture
and training strategy are illustrated in Section 3.2.

3.1. Animatable Textured 3D Guidance
SMPL&SMPLX. The Skinned Multi-Person Linear
(SMPL) model [41] is a 3D parametric human model
that defines the shape topology of body. It uses shape
parameters β ∈ R10 and pose parameters θ ∈ R24×3 to
represent the 3D human body mesh M(β, θ) as:

Tp(β, θ) = T +Bs(β) +Bp(θ),

M(β, θ) = W (Tp(β, θ), J(β), θ,W), (1)

where T is the mean template shape, Bs(β), Bp(θ) are
vectors of vertices representing offsets from the template.
Tp(β, θ) is the non-rigid deformation from T . W (·) is the
linear blend skinning (LBS) [53] function applied to rotate
the vertices around the joint center J(β) with the smoothing
defined by the blend weights W .

The SMPL-X model [45] builds upon SMPL, adding fea-
tures for hands and face, enhanceing facial expressions, fin-
ger movements, and detailed body poses.
Clothed Human Reconstruction&Animation. Our hu-
man reconstruction method is based on ECON [60]. Given
a video, we choose a frame I according to estimated body
pose adaptively, which performing image try-on [6, 7, 61]
during inference, as the input of normal estimation net-
work [32, 59, 60]. To guide the normal map prediction for
clothed normal map (denoted as N̂ c

{F,B} where F,B de-
note front/back view), and ensure robustness across poses,
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Figure 3. The overview of 3DV-TON. Given a video, we first use our 3D guidance pipeline to select a frame I adaptively, then reconstruct
a textured 3D guidance and animate it align with the original video, i.e. V . We employ a guidance feature extractor for the clothing image
C and the try-on images Ct, and perform feature fusion using the self-attentions in the denoising UNet.

we use body normal maps N b
{F,B} rendered from the esti-

mated SMPL-X M b(β, θ) as reconstruction conditions. Ac-
curate alignment between body estimation and clothing sil-
houettes proves crucial for this process. However, existing
human pose and shape (HPS) regressors [36, 37, 51, 52]
fails to provide pixel-aligned SMPL-X fits. Unlike pre-
vious works [59, 60] that require precise body pose opti-
mization, our method prioritizes clothing reconstruction ac-
curacy over anatomical details. By eliminating SMPL-X
pose θ optimization during parameter refinement, we reduce
optimization steps and reconstruction time to ∼30s while
maintaining performance. We additionally optimize cam-
era scale s to address systematic camera estimation errors
in HPS methods. Our optimization process initializes with
estimated SMPL-X’s shape β, translation t parameters and
camera scale s, focusing on minimizing silhouette and nor-
mal loss:

LSMPL-X = LNd
+ LSd

+ λ ·min(d− s, 0), (2)

LNd
= |N̂ c −N b(β, t, s)|, LSd

= |Ŝc − Sb(β, t, s)|,

where LNd
is a normal map L1 loss, LSd

is a L1 loss be-
tween the silhouettes of the SMPL-X Sb and the clothed

human mask Ŝc segmented from image I . We additionally
introduce a unidirectional regularization penalty to address
frequent partial body observations in training data (see Sup-
plementary Materials.), activated during loss computation
when camera scale falls below the dataset-defined threshold
d. Following SMPL-X refinement, we iteratively updating
the normal map and SMPL-X parameters through T refine-
ment cycles.

We reconstruct the front and back surface using depth-
aware silhouette-consistent bilateral normal integration (d-
BiNI) method introduced by [2, 60]. However, poses often
result in self-occlusions, which cause large portions of the
surfaces to be missing. In such cases, we use a simple way
to infill the missing surface using the estimated SMPL-X
body that invisible to front or back cameras, and union the
parts of surface by surface reconstruction methods [28, 31].
Since the reconstructed mesh is aligned with the image pix-
els, we can simply use interpolated pixel values as the mesh
texture after calculating visibility. For the invisible body
areas, we use normals as the texture.

The reconstructed clothed human inherit the hierarchical
skeleton and skinning weights from the underling SMPL-
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X body model, allowing to animate it using the estimated
SMPL poses [51] from the original video. Specifically, for
each vertices j of the clothed human mesh, we use k-nearest
neighbor (KNN) search to obtain a set Kj composed of
K neighboring control points denoted as {pk|k ∈ Kj} in
canonical SMPL-X model. Then, the interpolation weights
for control points pk can be computed as:

wjk =
ŵjk∑

k∈Kj
ŵjk

, ŵjk = exp(−d2jk), (3)

where djk is the distance between vertices j and the neigh-
boring vertices pk in SMPL-X. The overall 3D guidance
generation pipeline is depicted in the upper part of Figure 3.

3.2. Network Architecture
Controlled Diffusion Model. Stable Diffusion [27, 49] is
the basis for our network that consists of a varialtional au-
toencoder (VAE) [34] and a denoising UNet [50]. Given an
image x0 and a control condition c, the VAE first encodes
the image x0 into latent space: z0 = E(x0). The UNet
learns to predict a noise ϵθ or velocity vθ based on the con-
trol condition c and the noisy latent zt : zt = αtz0 + σtϵ.
The training loss of the UNet can be formulated as:

LLDM = Ez,c,ϵ,t[∥vt − vθ(zt, t, c)∥22], (4)

where t represent the diffusion timestep, ϵ ∼ U(0, I),
vt = αtϵ − σtz0 [40]. In inference, data samples can be
generated from Gaussian noise zT ∼ N (0, I) by the de-
noising process.
Guidance Feature Extractor. Our method employs two
reference conditions: clothing images C ∈ Rb×3×H×W

and try-on images Ct ∈ Rb×3×H×W encoded into latent
space through VAE encoder E as C = E(C) and Ct =
E(Ct). These latent representations (C,Ct ∈ Rb×4×h×w

are concatenated along the batch dimension to form com-
posite reference features F ∈ R2b×4×h×w. We duplicate
the denoising UNet as the Guidance Feature Extractor that
capture the visual features of the clothing images and try-
on images. Note that we remove text encoders and all cross
attention layers cause our textured 3D guidance provided
sufficiently explicit visual reference.
Denoising Network. We employ a UNet architecture from
Stable Diffusion [49] without cross-attention layers, ex-
tended into a pseudo-3D structure through temporal mod-
ule [20] integration to enable realistic motion generation,
serving as our base denoising network. Given a batch of
source videos Vs ∈ Rb×3×f×H×W , with corresponding
clothing-agnostic videos Va ∈ Rb×3×f×H×W and mask
videos Vm ∈ Rb×1×f×H×W . We extimate the SMPL se-
quences M using HPS methods [51, 52]. Our adaptive 3D
guidance pipeline then generates textured 3D guidance V .
The denoising input comprises concatenated features along

the channel dimension: the noisy latent video zt, the la-
tent clothing-agnostic video E(Va), the resized mask video
V ′
m, the SMPL geometic guidance E(M) and the textured

3D guidance E(v). To accommodate this 17-channel input,
we expand the UNet’s initial convolutional layer with zero-
initialized weights.

Our guidance feature extractor avoids feature fusion be-
tween clothing and try-on images. Instead, we implement
texture-aware fusion through spatial attention mechanisms
(Figure 3). For each latent xi

s ∈ Rb×c×f×h×w entering the
i-th self-attention layer, we retrieve corresponding reference
features corresponding reference feature xi

f ∈ R2b×c×h×w

from the extractor. These features split into clothing fea-
ture xi

c and the try-on feature xi
ct , which we temporally

align by replicating along the frame dimension to obtain
x̂i
c, x̂

i
ct ∈ Rb×c×f×h×w. As shown in Figure 3, the three

types of features are concatenated along the spatial dimen-
sions, denoted by x̂i

s ∈ Rb×c×f×h×3w, . Then feature fu-
sion is performed by the attention layer of the denoising
network to obtain the latent xi+1

s , which incorporates both
the fine clothing textures and the frame-consistent 3D fea-
tures.

Training Strategy. Inspired by [13, 47, 63], our model is
trained on both image and video datasets by treating images
as single-frame videos. During training, we randomly se-
lect a type of dataset via a random number r ∼ U(0, 1),
where U(·, ·) is the uniform distribution. If r < τ , we use
the sampled images for training, and set the gradients of
the temporal attention as zero to freeze the temporal mod-
ule. Otherwise, we sample data from the video dataset, and
make the temporal attention trainable. Hence, our training
objective can be formulated as:

L = Ez,ϵ,t[∥vt − vθ(zt, t,C,Ct,V)∥], z ∼ {zimg, z
1:f
vid}.

(5)

We incorporate control conditions through Classifier-Free
Guidance (CFG) [26]. Specifically, we randomly omit the
clothing image C with a probability of p1, the try-on image
Ct with a probability of p2, and the textured 3D guidance
V with a probability of p3.

Masking Strategy. Our pipeline begins with garment seg-
mentation using either human parsing [38] or segmentation
model [35] to generate clothing masks. We compute bound-
ing boxes from these masks and employ a human estimation
model [19, 36, 37]to selectively critical anatomical regions
(e.g. face and hands) while preserving body detail. This
streamlined approach effectively prevents garment transfer
failures caused by leaking clothing. Please refer to Sec-
tion 4.5 for illustration.
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Figure 4. Qualitative comparison for dress try-on on the ViViD
dataset.

4. Experiments

4.1. Datasets
Training datasets. We use two image datasets, VITON-
HD[5] and DressCode [9], along with one video dataset,
ViViD [13], to train our diffusion model. Due to the low
resolution of the VVT [11] dataset, we opt not to use it
for training. Specifically, the VITON-HD dataset contains
13,678 images of upper-body clothing with corresponding
model images. The DressCode dataset includes 15,363 im-
ages of upper-body clothing, 8,951 images of lower-body
clothing, and 2,947 images of dresses, along with images of
models wearing these garments. The ViViD dataset consists
of 9,700 videos featuring models along with corresponding
clothing images. This dataset contains 4,823 video-image
pairs for upper-body clothing, 2,133 for lower-body cloth-
ing, and 2,744 for dresses, with a total of 1,213,694 frames.
All image and videos are resized to 768 × 576 for train-
ing. For video data, we randomly select a frame to con-
struct the try-on image condition using the image try-on
method [6, 7, 61]. For image data, we set all try-on con-
ditions to be empty.
HR-VVT benchmark. Owing to the limitations of the
ViViD dataset, which contains limited scenarios, and VVT
dataset, which only includes upper-body clothing and ex-
hibits relatively uniform body poses, coupled with a low
resolution of only 256 × 192, it is challenging to accu-

Method Paired Unpaired
SSIM↑ LPIPS↓ V FIDI3D↓ V FIDRexNeXt↓ V FIDI3D↓ V FIDRexNeXt↓

StableVITON [33] 0.8019 0.1338 34.2446 0.7735 36.8985 0.9064
OOTDiffusion [61] 0.8087 0.1232 29.5253 3.9372 35.3170 5.7078
IDM-VTON [6] 0.8227 0.1163 20.0812 0.3674 25.4972 0.7167
StableVITON+AM [63] 0.8207 0.1291 19.9239 0.7586 22.0262 0.8283
OOTDiffusion+AM [63] 0.8154 0.1244 19.3173 0.9382 23.3938 1.1485
IDM-VTON+AM [63] 0.8252 0.1212 18.2048 0.4481 22.5881 0.5397
ViViD [13] 0.8029 0.1221 17.2924 0.6209 21.8032 0.8212
CatV2TON [8] 0.8727 0.0639 13.5962 0.2963 19.5131 0.5283
3DV-TON (Ours) 0.8681 0.0707 13.4062 0.2741 19.4714 0.3664
3DV-TON∗ (Ours) 0.8992 0.0521 10.9680 0.2033 18.1151 0.3149

Table 1. Quantitative comparison on the ViViD dataset. ∗ indi-
cates our method using the same mask with ViViD [13].

rately assess video try-on methods. Therefore, we have con-
structed a high-resolution (∼720p) video try-on benchmark
called HR-VVT that includes 130 videos with 50 upper-
body clothing, 40 lower-body clothing, and 40 dresses,
with a variety of garments and motions in complex scenar-
ios. Please refer to our Supplementary Materials for more
dataset details.

4.2. Implementation Details
Textured 3D guidance. During the 3D human reconstruc-
tion process, to achieve better body estimation, we use a
image-based HPS regressor [14, 37, 64] with SMPL-X and
iteratively refined the SMPL-X parameters T = 10 times
for clothed human reconstruction based on ECON [60]. To
ensure smooth animation of the 3D guidance, we employ
a video-based SMPL estimation approach [51, 52]. Due to
the differences between image-based and video-based esti-
mation methods, we use the body from the video-based es-
timation as the binding template to avoid texture distortion
and animate it to render a guidance video, which is aligned
with the source video. Please refer to Supplementary Mate-
rials for more details.
Training. We initialize our guidance feature extractor and
denoising network using the weights from SD1.5 [49], and
employ Animatediff [20] to initialize the temporal attention.
Our model is trained in a single-stage manner using 768 ×
576 resolution, 32 frames (2 strides for videos) data. The
model was trained using A800 GPUs for 40000 steps with
a learning rate of 1e-5.

4.3. Qualitative Results
We conduct qualitative comparisons with the currently
available method for video try-on that released the inference
code, ViViD [13] and CatV2TON[8]. The clothing images
and the person videos are from ViViD-S [8, 13] test set and
our HR-VVT set. None of the images or videos have ap-
peared in the training data.
Comparisons on ViViD dataset. As shown in Figure 4 and
Figure 5, other methods suffer from artifacts and generate
garments limited by the patterns of the original clothing,
while our method generates accurate garment shapes, offers
better visual quality, and produces realistic clothing motion
that adapts to the person’s motions. Figure 6 shows that
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Figure 5. Qualitative comparison for upper garment try-on on
the ViViD dataset.

Figure 6. Comparison for lower garment try-on on ViViD.

ViViD [13] fails at this case, while CatV2TON generates
inconrrect gaments along with blurriness and artifacts. In

Figure 7. Qualitative comparison for dress try-on on HR-VVT.

Figure 8. Comparison on upper garment try-on on HR-VVT.

contrast, Our 3DV-TON generates accurate clothing with
good temporal consistency.
Comparisons on HR-VVT benchmark. Our HR-VVT
benchmark includes a more diverse set of environments,
clothing. As shown in Figure 7, ViViD [13] struggles
with perspective changes during subject movement, and
CatV2TON fails to preserve garment consistency. In con-
trast, our method leverages explicit textured 3D guidance
to maintain visual coherence across viewpoints and motion
sequences. Figure 8 shows that our approach’s superior-
ity in outdoor scenarios, where competing methods exhibit
artifacts and unrealistic texturing. Figure 9 demonstrates
how our robust 3D guidance pipeline ensures reliable per-
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Figure 9. Comparison on lower garment try-on on HR-VVT.

Method Paired Unpaired
SSIM↑ LPIPS↓ V FIDI3D↓ V FIDRexNeXt↓ V FIDI3D↓ V FIDRexNeXt↓

ViViD [13] 0.8889 0.0876 10.2367 0.1785 16.4684 0.6807
CatV2TON [8] 0.8670 0.1144 12.1280 0.1798 16.8880 0.3454
3DV-TON (Ours) 0.8801 0.0857 10.7682 0.1420 14.5499 0.4217

Table 2. Quantitative comparison on HR-VVT benchmark.
Best results are highlighted in bold, the second are underlined.

Datasets Method Fidelity (%) Consistency (%) Overall Quality (%)

ViViD
ViViD [13] 24.55 20.25 20.39
CatV2TON [8] 12.09 10.92 10.53
3DV-TON (Ours) 63.36 68.83 69.08

HR-VVT
ViViD [13] 14.02 11.82 11.77
CatV2TON [8] 5.97 3.36 2.70
3DV-TON (Ours) 80.01 84.82 85.53

Table 3. User preference rate on the HR-VVT benchmark and
ViViD dataset.

formance even with partial character visibility. Please refer
to our Project Page for more qualitative comparisons and
video results.

4.4. Quantitative Results
Comparisons on ViViD dataset. We report quantitative
results with SSIM [56], LPIPS [66] to evaluate the image
visual quality in the paired setting, and use Video Frechet
Inception Distance(VFID) [11, 42] to measure the gener-
ation quality and temporal consistency in the both paired
and unpaired setting, following [8, 11, 13, 30]. VFID ex-
tracts features of video clips for computation using pre-
trained video backbone I3D [3] and 3D-ResNeXt101 [23].
Our method employs a rectangular mask strategy that en-
larges the area to be generated, which creates an unfair com-
parison. Nonetheless, as reported in Table 1, our method
still achieves comparable results in SSIM and LPIPS met-
rics, while surpassing existing methods in the VFID metric.

Figure 10. Ablations for the mask strategy.

Figure 11. Ablations for the SMPL guidance.

When we use the mask from ViViD [13], our method deliv-
ers better results across all metrics.
Comparisons on HR-VVT benchmark. We compare
the current state-of-the-art and code released video try-on
method, ViViD [13] and CatV2TON on our benchmark. As
shown in Table 2, although we use the larger mask, our
method outperforms other works. This improvement can be
attributed to the consistent texture features brought by our
textured 3D guidance. We also demonstrated advantages in
LPIPS, which proves that our method is capable of generat-
ing try-on results with better visual quality.
User Study. Considering that the current quantitative met-
rics are difficult to accurately evaluate the quality of the
model in terms of human preference in the unpaired set-
ting without ground truth. We conduct a user study that in-
cludes 130 video results and involved 20 annotators to pro-
vide a comprehensive comparison in terms of visual quality
and motion consistency. Table 3 shows that our 3DV-TON
achieves better motion coherence and effectively restores
clothing details (i.e. “Fidelity”), resulting in superior visual
quality.

4.5. Ablation Study
We conducted ablation studies to verify the effectiveness of
our textured 3D guidance.
Speed Analysis. After optimizing the SMPL fitting pro-
cess, our method is capable of completing the reconstruc-
tion in ∼30s, and generating a 32-frame video with dif-
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Figure 12. Ablations for the textured 3D guidance. Textured 3D
guidance helps to improve the motion conherence.

Figure 13. Ablations for our textured 3D guidance. Textured
3D guidance helps to improve the clothing consistency.

SMPL Tex. 3D SSIM↑ LPIPS↓ V FIDI3D↓ V FIDRexNeXt↓
0.858 0.078 5.236 1.0257

✓ 0.880 0.059 4.087 0.5854
✓ ✓ 0.909 0.048 2.381 0.3011

Table 4. Quantitative ablations for the 3D guidance.

fusion after removing cross attention takes ∼35s under
768 × 576 resolution. Due to our use of single-image re-
construction, the diffusion model accounts for the majority
of the inference time for longer videos.
Mask Strategy. Our robust rectangular mask strategy can
effectively addresses the issue of try-on failures caused by
the leakage of original clothing information in videos. Fig-
ure 10 demonstrates that our method can generate try-on
results that align more closely with the target garment pat-
terns.
SMPL Guidance. As shown in Figure 11, the introduc-
tion of SMPL guidance helps in generating more accurate
human bodies and properly fit clothing on the body. The

person’s arms and shoulders are accurately generated after
using SMPL.
Textured 3D Guidance. Recent studies [4] demonstrate
that conventional pixel reconstruction objective biases dif-
fusion models toward appearance fidelity while compromis-
ing geometric accuracy, leading to motion artifacts. As
demonstrated in Figure 12, while SMPL-based geometric
guidance improves body structure estimation in masked
regions, it exhibits persistent limb ambiguity during leg-
crossing scenarios. Our textured 3D guidance resolves
this limitation by supplementing explicit appearance con-
straints, effectively balancing visual quality and motion co-
herence. Our texture 3D guidance ensures accurate cloth-
ing texture preservation across arbitrary poses and view-
points. As shown in Figure 13 (a), our method faithfully re-
constructs the “boss” logo while maintaining anatomically
consistent body proportions during lateral rotation. Fig-
ure 13 (b) demonstrates viewpoint-consistent rendering of
the “lee” text across dynamic poses. In Table 4, we present
quantitative ablation experiments, where geometric features
and textured 3D guidance significantly improved the SSIM,
LPIPS, and VFID metrics.

5. Conclusion
In this paper, we propose 3DV-TON, a novel diffusion-
based framework guided by geometric and textured 3D
guidance. By leveraging SMPL as parametric body ge-
ometry and employing single-image reconstructed 3D hu-
mans as animatable textured 3D guidance to provide frame-
specific appearance conditions, 3DV-TON alleviates the
critical limitation of inconsistent results caused by existing
methods’ over-focus on appearance fidelity. The framework
learns a geometrically plausible human body across diverse
poses and viewpoints, while maintaining temporally consis-
tent motion of clothing textures. Quantitative and qualita-
tive evaluations on existing datasets and our newly intro-
duced HR-VVT demonstrate state-of-the-art performance
in the video try-on task.
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3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models

Supplementary Material

A. HR-VVT benchmark.

Owing to the limitations of the exist datasets, which ex-
hibits relatively simple scenarios, it is challenging to accu-
rately assess video try-on methods. Therefore, we have con-
structed a high-resolution (∼720p) video try-on benchmark
called HR-VVT that includes 130 videos with 50 upper-
body clothing, 40 lower-body clothing, and 40 dresses, with
a variety of garments and motions in complex scenarios.
Figure 14 show some examples in our benchmark.

Our HR-VVT benchmark was sourced from e-commerce
platforms for research purposes and will remain strictly
reserved for academic use. Our framework contains no
personal identity information, with facial regions excluded
from inpainting operations to ensure privacy preservation
during the training process.

B. Disccusion

Limitation. Although we have significantly reduced the re-
construction time of clothed 3D humans by improving the
optimization objectives of SMPL refinement and keeping
it within an acceptable inference time, this is still insuf-
ficient in scenarios with higher speed requirements. Re-
cently, works [48] on reconstructing animatable clothed 3D
humans using a single feed-forward approach has greatly
accelerated inference times and achieved remarkable im-
provements in visual quality. We believe that updating our
3D guidance pipeline to a single feed-forward paradigm can
accelerate the reconstruction process, further advancing the
application of textured 3D human guidance in more scenar-
ios.
Potential societal impact. This paper delves into the realm
of video try-on generation. Because of the powerful gen-
erative capacity, these models pose risks such as the poten-
tial for misinformation and the creation of fake videos. We
sincerely remind users to pay attention to generated con-
tent. Besides, it is crucial to prioritize privacy and consent,
as generative models frequently rely on vast datasets that
may include sensitive information. Users must remain vig-
ilant about these considerations to uphold ethical standards
in their applications. Note that our method only focus on
technical aspect. Both videos and model weights used in
this paper will be open-released.

C. Animatable Textured 3D Guidance

Refine SMPL-X. Since our clothed human reconstruction
method is based on the SMPL-X [41, 45] model, it is im-
portant to accurately align the estimated body and clothing

silhouette. In practice, human pose and shape (HPS) regres-
sors [36, 37, 51] can not give pixel-aligned SMPL-X fits.
We refine the SMPL-X parameters by minimizing LSMPL-X
in Section 3.1 of our paper.

Unlike the optimization of shape β, pose θ, and transla-
tion t of SMPL-X in ICON [59], Since we primarily focus
on the clothing area and do not have high accuracy require-
ments for the body pose details, we adjust the optimization
target without optimizing the SMPL pose θ. This allows us
to significantly reduce the number of optimization steps to
reduce the reconstruction time (˜30s). And we optimize the
shape β, camera scale s, and translation t to mitigate the
anomalies in loss caused by incomplete human body parts
and inaccurate camera estimation in real data, which may
lead to errors in the refined SMPL-X. We additionally intro-
duce a unidirectional regularization penalty to prevent the
incorrect decrease in loss caused by abnormal reduction in
camera scale caused by partial bodies present in the training
data.

As shown in Figure 15, if we optimize the pose of
SMPL-X in Panel (a), the pose refinement may be abnormal
due to the incomplete human body parts, leading to recon-
struction failure. Thanks to the powerful generative capabil-
ities of the diffusion model [27, 49], which do not require
high precision for the pose accuracy in 3D guidance, we
choose to freeze the pose parameters θ, as this approach is
sufficient to yield usable results for the robust 3D guidance
reconstruction. In Panel (b) and (c), current HPS regressors
often yield inaccurate camera scale estimations. To address
this issue, we simultaneously optimize the camera scale s
applied to SMPL-X. However, for incomplete human bod-
ies, the camera scale s tends to be abnormally reduced. We
use a unidirectional regularization penalty to constrain the
optimization direction of the s. Figure 19 demonstrates that
our 3D pipeline is applicable to most scenarios.
Animation. To ensure smooth animation of the 3D guid-
ance, we employ a video-based SMPL estimation ap-
proach [51, 52]. However, during the reconstruction phase,
our input is an image, and to achieve more accurate recon-
struction, we employ an image-based SMPL-X estimation
method. Since there are differences in shape and other
parameters between the body estimations from video and
image-based methods, directly using the body sequences
estimated from video for animating may result in texture
distortion and deformation, as shown in Figure 16 (left).
To address this issue, we utilize the video-based estimated
SMPL for rigging the reconstructed clothed human before
animation. Figure 16 (right) demonstrates that our method
effectively avoids texture distortion and deformation.
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Figure 14. Illustration of the HR-VVT benckmark.

D. Network Architecture

Temporal attention. Since our textured 3D guidance pro-
vides sufficiently explicit frame-level references, we find
that our 3DV-TON can maintain texture consistency even
when temporal attention is freezed (initialized with Ani-
mateDiff [20]), albeit with some minor jitter and mask ar-
itfacts. Texture errors occur only when the 3D guidance
hard to provide texture references, as shown in the first two
columns of Figure 17. This demonstrates that our 3DV-
TON, using textured 3D guidance, is capable of generat-
ing consistent texture motion rather than overly focusing on

smoothing inconsistent content between frames.

E. More Results
As shown in Figure 18, our method can handle various
shape, materials, and complex textures of clothing, while
generating consistent texture motions.

For more qualitative comparisons and video try-on re-
sults, please refer to the project page.

14



before after before after before after(a) (b) (c)
Figure 15. Effectiveness of our SMPL-X Refinement.

Figure 16. Effectiveness of our textured 3D animation method.

Figure 17. Effectiveness of freezing temporal attention of our 3DV-TON.
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Figure 18. More results generated by 3DV-TON.
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Figure 19. Animated 3D guidance.
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